Accounting for the soldier’s pay—Organization of programming

By Major W. S. Caskey, M.B.E.

This paper discusses the organization of programming within a large-scale data-processing
installation, and comments on some of the problems which are vitally important when deciding the

overall programming concept.

The paper relates primarily to the Royal Army Pay Corps

installation, which is described in the paper by Lt.-Col. D. W. Moore, which begins on p. 249.

Statistical data

Statistics are a dangerous basis on which to commence
my talk, but perhaps the basic problem of programming
this application has been the sheer size and complexity
of it. One has to imagine a daily processing which
requires three main programming runs—an edit run of
some 6,000 instructions, an updating run cf some
35,000 instructions, and an output distribution run of
some 15,000 instructions. The monthly processing
involves three major runs varying between 5,000 and
14,000 instructions. In our daily processing of soldiers’
accounts there can be any number, in any permutation,
of approximately 400 possible changes. The great
majority of these involve considerable validity checking.
Many are retrospective to action already taken, since
we maintain a historic record for up to a year. All,
whether retrospective or not, or in whatever combination,
are automatically processed. The application produces
up to 70 varying forms. Some of these have varying
formats.

The master file record for each soldier varies from
about 400 to 1,900 digits; the average length is 800.
The record itself is divided into two—a fixed portion
which contains data common to all soldiers, and a
variable portion containing data which relate only to
soldiers in certain circumstances (married details, allot-
ment particulars, etc.).

Method of approach

How then should one set about a programming task
of this magnitude? Well, I will outline our views, but
I wish to make it clear that some of these will not
coincide with the practice we actually employed; but
where this is the case we would have been better advised
to follow the course put forward.

By-passing completely the feasibility-study stage, I
think the first requirement is to have a clear definition
of the overall task. Then, I think, the controlling
programmer must project his thought to visualizing the
flow of work around the computer and its supporting
units—in short, the computer system. He must gear his
programming concept not only towards an efficient
program but, of far more importance, to one which is
flexible, is capable of amendment easily, and meets the
needs of a good steady flow of work.

Downl oaded from https://academn c. oup. confconjnl/article-abstract/5/4/258/ 316240

by guest

on 19 Novenmber 2017

258

While he is doing this, the programmers proper (or
the systems analysts, as the case may be) can draw up
a precise and critical assessment of what output is
required from the computer system. In short, one builds
up a programming objective. This evaluation must
include a definition of the precise contents of each form,
even for those forms used infrequently. The number of
forms obtained may well be a critical factor in the nature
of the processing runs to be adopted.

The next stage is a critical examination of the input
data currently available, and an assessment of any further
data of value which might be obtained by reasonable
change. When this has been completed the master
record can be drawn up containing those historical facts
and current accumulations, etc., necessary to provide
the output already defined. One can then consider,
for example, whether the record should be fixed or
variable in length. In our case, we chose a record which
contains both a fixed and, where appropriate, a variable
portion.

When these stages have been completed, one can
determine the means by which the input data can be
processed against the master record to ensure that all
regulation criteria are met, and that the necessary output
is provided—in short, one can begin to build up the
logic of the programming runs.

Of course, as we progressed, these three requirements
became somewhat interrelated. At quite an early stage
we were able to define the basic requirement of how to
establish accurately the soldier’s entitlement at any point
in time. We were able to decide to omit rates of pay
from the actual record almost entirely (holding centrally
large general tables). We decided to hold details of the
soldier’s status related to time—all changes simply being
added to the record in ‘skeleton’ form in correct
chronological order.

Any casualty received is converted into a ‘skeleton’
which is placed in the soldier’s magnetic-tape record in
its correct chronological position. Any ‘skeletons’
already on the record relating to a date later than this
currently received casualty are taken into account in
assessing the effect of the casualty and determining the
current rate of pay to be notified to the unit. This basic
concept has never changed and meets all the require-
ments of retrospectivity—a common feature of our
processing.

Accounting for the soldier’s pay

Then, of course, came the detailed break-down of
work; first of all to programming runs within the pro-
gramming master concept and, secondly, within runs,
to subroutines and special machine program requirements.

Programming control criteria

Before 1 deal with the organization we used to effect
this task I feel 1 ought to list certain important points
which we had to consider before being definitive on this
aspect. They might even be called basic programming
control principles, applying generally to large-scale data
processing. These are as follows:

(a) To be repetitive, the computer system had to be
visualized at the earliest possible minute. Very often
there are certain factors which are fundamental and
which must be adhered to regardless of circumstances.
For example, in our case we receive input data from
15 offices all over the country. They can arrive by
either of two postal deliveries, and in an order which
varies from day to day. This factor means that our
editing runs must be processed at least twice on any
given day and, more fundamentally, that the master file
must be so contained that a variable sequence of offices
present no problems. The number of output forms, in
our case about 70 built up initially in random order as
a result of individual processing requirements, demand
a further run—a distribution run. This run builds up
the forms in proper format, gives the facility of carrying
out a great deal of additional processing where required
without putting additional load on the main updating
run, and puts all like forms in a predetermined sequence
on to print tapes. You will note that such a concept
significantly changes the logic of the main updating run
if previously this has been viewed solely as a programming
task. In short, the nature of the programming runs can
be seen clearly from an examination of the system
requirements considered in the light of machine con-
figuration limitations.

(b) All input data had to be examined by the computer
itself to check that the manual processes have been
completed correctly. In my view this is a cardinal
principle, to be adhered to at all costs, both for initial
conversion of master records and for daily updating.
We were extremely strict in this field—yet we still had
many cases slipping through the net. This editing can
be done either in part on electrical accounting machinery,
or on a pre-main updating process on the computer, or
as part of the updating process on the computer.
Primarily, we chose the two former, doing the bulk of
our editing before any run which contains a master file.
Certain advantages accrued, among which were:

(i) accuracy of data before having the master file on
the computer;
(ii) computer-agreed control totals produced quickly
(and again before processing the master file);
(iii) facility to build up interrelationship of casualties
for soldiers;

259

(iv) increased flexibility (more tape units available,
etc.).

(¢) Every programmer had to be made to realize that
his work would be run eventually on the computer in his
absence, possibly at 2 o’clock in the morning by a con-
sole operator without his special knowledge. Therefore
he must have the console operator’s needs in his mind
at all times. There must be no legs of his program
which are labelled ““This cannot happen.” They will
occur together with many more he never even thought of.
Therefore, corrective transfer action for every possible
eventuality must be recorded in a form which is readily
digestible.

(d) A good detailed brief for programmers had to be
issued at the earliest possible stage. Such a brief must
lay down programming conventions and instructions.
It should also define precisely the documentary standard
required for flow charts, program folders, ctc. etc.
Ideally it should also define the best means of desk
checking.

(¢) Good and standard documentation had to be
insisted upon. Somehow, as the organization builds up,
there must be the means of allotting storage space,
co-ordinating programmers’ work, allocating universal
or common working stores, constants and subroutines.
Carrying this thought even further forward to opera-
tional running, there must be the means of patching
programs speedily and effectively. We are exceptional
in this instance (we have had something like 700 patched
instructions in our programs, plus two re-aligning
scrutinies arising from the recent pay review, and we
have about 70 revised instructions on average each week)
—nevertheless the principle remains common to most
installations.

(f) The problem of coding had to be given early
priority. In our view this is a wide issue. In our own
case we believe that the basic codes for (i) input data
prepared manually in the outlying offices for processing
on the computer against the soldier’s master file tape
record, for (ii) programming purposes, and for (iii) inter-
pretation of output coding, must be basically the same.
We went to endless trouble to do this, and now a clerk
can become a programmer and then go out to a unit
and use the same basic coding knowledge or extensions
of it throughout. We use three codes. The first is the
Card/Casualty Code which is the controlling medium for
the electrical accounting machines and for the computer.
The second is the Error Rejection Code. The third is
a General Purpose Code, used -for input and output
definition of data.

(g) May 1 here inject a personal view when speaking
of large-scale programs. The whole programming con-
cept should be built in sections which are suitable for
easy withdrawal and replacement. Complex pro-
gramming, a joy in small programs, can hold hidden
dangers in large-scale work, particularly where changes
are frequent and where the degree of integration is great.

bDownl oaded from https://acadeni c. oup. confconjnl/article-abstract/5/4/258/ 316240
y guest
on 19 Novenmber 2017

Accounting for the soldier’s pay

CHART A

Table 1
R.A.P.C. Electronic Accounting Development Unit—Outline Organization of Program Division, July 1959

COMMANDING OFFICER

CENTRAL TECHNICAL STAFF, ETC.

PROCESSING DIVISION
(Existing in skeleton only)

SENIOR PRbGRAMMER

NUMERIC TESTING SECTION

| |

Codmg Specialist programs Logic of master program of main

—
' SPECIALIST TASKS
|
{
|

(I1.O.C.S,, etc.) processing run.

Master record maintenance

\
|
CENTRAL PROCESS SECTION
1. Common user subroutines such as
DATE/STERLING CONVERSION
tax routines, etc. etc.
2. Outline of monthly run programs.

VALIDITY SECTION
(Individual subroutines other than com-
mon user and specialist to make up our
daily processing run.)

|
OUTPUT SECTION
Design and programming of all output
subroutines and sort programs (includ-
ing design of forms).

(h) Where there was one exceptionally large pro-
gramming run we found it advisable to set aside one
programmer to write the master program logic. This
practice saved many months of argument over which
subroutines should call in others, etc. etc. I record this
point with feeling as we suffered a little initially on
this score.

Programming staff organization

And so to the programming organization we used
from July 1959 (see Table 1). Prior to this period we
had a programming team which worked on the feasibility
study, etc., and did much of the subroutine logic. For
example, this team devised the means whereby we store
data related to time, and the means whereby we record
status and not pay rates (finding these from central pay
tables when required). This logic was built up in isolation
before all the various processing runs were determined,
but it has stood the test of time.

From July 1959 we had a Senior Programmer who
received his instructions from the Commanding Officer.
He kept, under his own direct control, programmers
dealing with the definition of the master record, specialist
programs, and coding. Thus nothing new could be
injected or any sizeable change made without his being
fully in the picture. This is in itself a problem in large-
scale programming when there is a large number of
programmers all busily creating new proposals!

We started off with three basic sections. The first
prepared the common user subroutines, the second pre-
pared the large number of validity routines to meet the

Downl oaded from https://academ c. oup. confconjnl/article-abstract/5/4/258/ 316240

by guest

on 19 Novenmber 2017

260

regulations relating to the 400 types of variation in
entitlement which can occur, and the third designed the
output forms and prepared the print routines.

These programmers prepared logical flow charts for
their tasks. These charts were examined initially by a
numeric test section. This section had the basic function
of confirming the logic used within subroutines, and of
correcting errors. However, it also provided the means
of assessing considerable statistical data. The sizes and
frequency of the use of subroutines became clearly
defined. Many commonly used groups of instructions,
working stores, constants, etc., were extracted and made
into what we call universal areas. These universal factors
are dealt with by the person responsible for the master
program, and are made available to all programmers in
the fastest storage medium which the frequency of their
being required justified. This process took rather a long
time, and reduced the overall size of the runs considerably.
However, four valuable additional bonuses occurred.
Firstly, this section rapidly provided a nucleus of
programmers with a wide view of the programming
concept. Secondly, the means whereby a sound storage
allocation could be made was provided—and 1 would
like to record here that the basis on which this was done
has not been changed. Thirdly, the continuous training
of programmers was facilitated, as errors were referred
back to the offending programmer, and common errors
were circulated in programming directives, etc. Fourthly,
the best means of machine testing each subroutine was
examined and commented upon within this section.

This section was the main means of detailed co-
ordination of final effort. When the logic was cleared,

Accounting for the soldier’s pay

CHART B

Table 2
R.A.P.C. Electronic Accounting Development Unit—Qutline Organization of Program Division, March 1962

Unit became Operational 1 November 1960

COMMANDING OFFICER

l
SECOND-IN-COMMAND

CENTRAL TECHNICAL STAFF

PROCESSING DIVISION

SENIOR PROGRAMMER

MACHINE TESTING SECTION
(Preparation and maintenance

of test accounts and of detailed
testing of new programs,
amendments, etc.)

l
UPDATING SECTION
(responsible for the main daily
processing run)

EDIT, CONVERSION,
SAVINGS SECTION
(responsible for all runs asso-
ciated with these headings)

DISTRIBUTION RUN/OUTPUT
(responsible for forms design
output

RESEARCH AND DEVELOPMENT
(preparing new applications)

CREDIT OF
PAY/TAX SECTION

OUTPUT SECTION

(responsible for a large
monthly run and all tax
programs—also for scrutiny run)

—_— —l

1
1401/3
(responsible for all 1401/3
programs and scrutinies, etc.)

subroutines, and

daily and monthly distribu-
tion runs, plus sorting)

the initiating programmer prepared detailed “‘block
diagrams” (i.e. in our language, logical charts with actual
compiler instructions within the blocks).

These in turn were critically examined by the numeric
testing section, who put detailed numeric examples
through every single instruction, sending the work back
again and again until a satisfactory standard was reached.

The specialist programmers [referred to earlier
studied the problems of tape labelling, of the input/out-
put control system, and of correction routines, etc.
During the early stages we used a relatively senior
programmer to prepare a very large general-purpose
code, a sizeable card and casualty code, and an error
rejection code.

Overall control of all this activity was exercised in
two ways: first, centrally within the unit by means of
Planning Instructions which clearly defined requirements,
rulings, and the principles to be followed; secondly,
within the programming set-up by detailed Programming
Instructions which defined precisely programming tech-
niques, the ever-changing library of common subroutines,
amendments/additions to codes, alterations to master

261

records, etc. etc. I cannot over-stress the need for a
sound co-ordination medium. We were extremely
careful, and yet there were far too many instances of
different interpretation of instructions and of meetings,
etc. Each of these eventually wasted valuable machine
time.

Changes in programming organization

The programming organization should be developed
continuously—if it remained static then 1 would fear
that proper control was not being exercised. Let us now
look at Table 2. In our case, the numeric test section
disappeared and a machine testing section grew as we
approached operational running. Indeed, while going
to press I should note that the numeric test section has
returned and is saving valuable machine time by reducing
the number of errors which would have turned up during
test periods on the computer.

Gradually, as we gained machine experience, testing
procedures were developed, better means of correcting
assembly errors were found, and a strict control of

bDownl oaded from https://acadeni c. oup. confconjnl/article-abstract/5/4/258/ 316240
y guest
on 19 Novenmber 2017

Accounting for the soldier’s pay

‘patches’ to subroutines, etc., after testing was devised.
The absolutely rigid control of this field is a tremendous
problem in itself, and no laxity can be allowed. The
problems of the effect of changes, both within a pro-
gramming run and between programming runs, are
major ones, and clear-sighted control is imperative.
After the initial few months of operational running,
the responsibility of individual programmers was raised
to runs instead of subroutines within a run. Currently,
the examination of further possible applications is
becoming more detailed as some of the experienced
programmers are freed from the initial task. Optimiza-
tion of programs, as and when the opportunity or the
need arises, has been and is still a profitable exercise.
New languages and programming aids are being reviewed

continually. Within the programming organization we
have a few non-programmers who maintain test accounts
and devise test data for re-written patched routines.
They critically examine all the output resulting from
testing sessions—in fact they form an integral part of the
testing section, and the programming organization.

Concluding remarks

Each of the points mentioned above, for example
Coding or Storage Allocation or Machine Testing, is
worthy of an hour’s talk in itself. 1 can only hope to
have outlined some of the problems and sketched out a
possible means of approach.

Book Reviews

Data Acquisition and Processing in Biology and Medicine,
Edited by KuURT ENSLEIN, 1962; 191 pp. (Oxford:
Pergamon Press, 50s.)

I was recently approached by the editor of a medical research
journal to referee a paper submitted by an author from the
United States who was proposing to make a quantitative
science of a particular branch of medicine—no British doctor
could be found to pass judgement on the paper. As an
applied mathematician I was intrigued to find that the non-
medical references in the paper were to geological papers.
This reflects an attitude of mind on the part of U.S. research
workers which is wholly to be applauded and which, outside
operational-research circles perhaps, is unfortunately too
seldom found in Britain. The explanation, at least in part,
of this greater U.S. willingness to cross inter-disciplinary
barriers is to be found in the impact which electronic instru-
mentation in general and computers in particular have had in
the U.S. There, good computing facilities in universities and
research centres are the norm; here, they are still the exception.

An example of what this means in scientific endeavour is
to be found in the book under review, which is the edited
proceedings of the 1961 Rochester Conference. The reports
cover papers read at five sessions, concerned with computers
in biology and medicine, computers and psychiatry, pattern
recognition, clinical and research instrumentation for bio-
logical systems, and instrumentation for electrocardiography
and electroencephalogy. It is interesting to note the degree
of automation aimed at—one writer reports that electro-
cardiograms are already recorded on tape for running into
a computer, but it is planned to use the cardiograph as an
on-line device to the computer. The combination of intricate
medical instrumentation, advanced computer techniques and
highly sophisticated statistical treatment in some of the
experiments is fascinating.

Cne of the papers on pattern recognition extends to the
study of chest X-ray photographs the techniques used to
assess the cloud photographs taken from the Tiros satellite.

Downl oaded from https://academ c. oup. confconjnl/article-abstract/5/4/258/ 316240

by guest

on 19 Novenmber 2017

262

The papers on computers have nwuch to interest British
readers. To me, most impact was made by the remarks by
Lusted on the problems of education facing medical scheols.
Doctors, he says, must somehow be taught to compute when
necessary, and he cites the work of doctors at Tulane Univer-
sity who have developed a computer program called ‘‘Probe”
which allows the medical researcher who does not know
programming to run his own medical data on the computer;
they attach great importance to allowing the researcher “‘to
get his hands on the machine.”

I am not, of course, competent to review the papers in
this volume for their medical contents; but I can whole-
heartedly commend the book to British research workers if
only for the insight it gives us of the attitude and approach
of our transatlantic colleagues to research problems.

Until British universities and research establishments are
equipped with computers in depth, as are their U.S. counter-
parts, one cannot imagine such a volume being written by
British research workers.

ANDREW YOUNG.

Modulation and Coding in Information Systents, by GORDON M.
RusseLL, 1962; 260 pp. (London: Prentice-Hall Inter-
national Inc., 42s.)

The purpose of this book, as stated in the Preface, is “to
give an introduction to the theory of information processes,
primarily those of modulation and coding . . . applicable to
the fields of power-system control, industrial control, data
transmission and processing and all types of communica-
tion . ..”. In saying this, the author does the book a slight
disservice, for he suggests that the material is theoretical,
dealing perhaps with information theory, coding theory and
the like. But there are several excellent texts already on the
market dealing with such theoretical aspects of communica-
tion and control systems. By contrast, there is a plethora of

